User Documentation

Heiko Scherrer

Tina Russell
Frank Lauer
Michael Schmut
Florian Gyger

0.0.1-SNAPSHOT

Copyright © 2005-2011

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

[=Y = Lo T iv

Yo 0] o1 iv
2. TArget AUIENCE ...oooiiiiiiiiie ittt s e e e e e e e e e e e e e e e iv
3. Project and SUD PrOJECESovviiiiiiiiiiiieeeeeeeeeeeeeteeet ettt %
IR (o] 1 (=T o (1 | = PPPPR PR 1
N I o T 2 o T] (1] = OO 2
A o = TST=T o] = Lo g I Y= P 3
2.1. Architecture of the Presentation Layerccccuviiiiieiiiiiiiiiiieicee e 3

3. BaCKeNd TIEI ovvieiiiiiee e 5
3.1. Architecture of the Backend Ti€rcccccccvviiiiiiiii 5

3.2. THE SEIVICE LAYELuuuiii e aane e aneenneannsannennne 6

3.3. The Data ACCESS LAYETcciiieiieiiccccccccc e 6

[I. Installation and DePIOYMENTii i i i e e e e e e e e e e e e e eenees 7
4. Prerequisites for INStallation ... 8
4.1. SPringSource dmMSEIVEI™ i 8
4.1.1. Installation of SpringSource dmMServer™cccccceviviviiiiinieeeeeeeeeenns 8

4.2. PostgreSQL Database SEerverccccceiiiiii e, 9
4.2.1. Post Installation Stepscoovvviiiiiiiiii 9

4.3. Using Other Databasescccovuuiiiiiiiiii e e e 10

5. Download and Installation ... 11
5.1. DoWNIOad OPENWMS.OMG ...uuvviiiiieeeieiiiiiiiiee e et e e e 11

5.2. Unpack and Install OpenWMS.0Q ...ccooeeiiiiiiiiiiiiieeee e 11

6. TNE FIST STA .ooeeiieiiii ettt e e e e e e e s e e ee s 12
6.1. RUNNING OPENWMS.OMG ..cooeiieiieeeeeeeeeee e 12

6.2. Logout or Lock the APPlICALIONeeiveiiieiiiiiiieeiieeeeee e 13

[II. The CORE MOAUIE ... eeeeneeenneenee 14
7. MOdUIE MANAGEMENTuiiiiiiiie et e e e e r e e e e e e e aaaes 15
A% T O 1Y = V= PP 15

7.2. Defining new Application MOAUIESccuvviiiiiiiiiiiiiieee e 15

7.3. Change existing Application Modulescccccceeii . 16

7.4. Manually Loading and Unloading Application Modulesccccvvvvveeeee. 17

S T U LT V= F= T = 1 01T L 18
S 0 I O 1Y = V= PP 18

8.2. USEr DEtallS ..ccceeeeeeeeeeeeeeeeee s 19

8.3. Change USEI'S IMAGEuuuiiiiiiiieiiiiiiieee ettt 20

8.4. Change USEr's PASSWOIduuuiuuiiiiiiiiiiiiiiiiiiiinriiierinrreesrrereree——.. 20

8.5. System USEr ACCOUNLcouuiiiiiii et e e e 21

8.6. USEr PreferenCeS ...ooooiiii i 21

9. ROIE MANAGEMENT ...ttt e e e e e e e 22
S R I O Y= oV = PP 22

9.2. Role Management SCIEENMccouiiiuuiiiiiieeeee it e e e 22

9.3. Creating a NEW ROIEoovvvviiiiiiiiiee 24

9.4. Madifing an existing ROIES ... 24

9.5. Assigning Grants t0 @ ROIEooii i 24

9.6. Assigning Users t0 @ ROIEooiiiiiiiii e 25

10. Preference ManagemeNTcuuiiiiiieeeiiiiiiii e e e 26
LO.1. OVEIVIEW .. 26
10.2. Preference Management SCrEENeevvvreeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 27
10.3. Create @ NeW PreferenCe ... 28

OpenWMS.org ii

User Documentation

10.4. Modify an existing PreferenCeeeeeeeeieiiieeeiieiiieiieeeieeiieeeeeeeeeeeeeenee 29
10.5. Delete an existing Preferenceooccvveieiiiiiiiiiiieeeee e 29
OO P PP OPPPPPPII 30

OpenWMS.org iii

Preface

The show must go on.

(Queen)

Welcome to the User Documentation of OpenWMS.org.

This part of the documentation shall be the first manual where you start reading to understand
the key concepts of OpenWMS.org warehouse management system and to become an
enthusiastic user or a Project Engineer who appreciates the huge amount of work we have
done so far to build an open, free and hopefully widely used warehouse management system.

The license agreement (LGPL) is chosen very friendly, so that anyone can download,
customize, build and sell the software like he or she wants to. Best open source projects
can only survive with a maximum of feedback they earn, also OpenWMS.org relies on your
feedback or improvement requests. Feel free to take part here.

1. Scope

The purpose of this manual is to explain the basic concept of OpenWMS.org, how the
installation process works and how to customize basic settings regarding arbitrary runtime
environments. It is not intended to explain a deeper system configuration or project
customization respectively extensions. These topics are explained in more detail in the
developer guide.

2. Target Audience

This documentation is written for all users of the OpenWMS.org application. Users, in that
context, are not solely actors who work with the application to manage their daily business.
But also Project Engineers who are deploying and customizing the system. All of them are
addressed to read this manual. Part | and Part Il describe the architecture and the installation
process hence these two chapters are dedicated to Project Engineers, all other parts are tend
to be read from all stakeholders. A list of stakeholders describes different roles and may not
be mixed with terms of the applications Role Management that is specified later on.

Following types of users are addressed:

* Project Engineer: Stakeholders which are primarily customizing and installing the
application. They are in the role of a project consultant with a great knowledge about the
application and the technologies behind. Customization and configuration is almost done by
themselves. A person acting in this role is the main contact person for the final customer in
case of change or support requests. Project Engineers are invited to share their experience
in the OpenWMS.org forum and are requested to provide all kind of feedback to wikis or bug
trackers. You are the guys who know best of customers business, so please tell us more!

e Operator: An Operator is an user who operates on the application to do the daily work. This
kind of stakeholder belongs almost always to the final customer. He or she has restricted
responsibility to the functionality of the application, that means she is not allowed to access
all existing functions of the GUI. She often belongs to a Role with limited user rights.

OpenWMS.org iv

Preface

« System Operator: The System Operator is a special kind of Operator who has advanced
user rights but does not have the same rights like a Project Engineer has. Like an Operator
the System Operator belongs to the customer and can inquire change requests or bug
reports to a Project Engineer.

3. Project and Sub Projects

OpenWMS.org is an application with the purpose to build warehouse projects. The application
itself is split into several sub projects that can be combined together to build up the whole
application. The delivered sub projects cover most oft the concerns each warehouse project
has.

* An OpenWMS.org CORE project: This sub project is totally out of scope of any warehouse
activities or requirements. It includes all the functionality around an enterprise application
like security & user management, connectivity and integration capabilities. The core project
is solely independent and can also be used in combination with other projects (not only
OpenWMS.org).

e The second sub project is called OpenWMS.org COMMON project and aims to be the
base for all other sub projects. This project includes common domain classes that exist
in all warehouse projects that were built with OpenWMS.org - think about Locations
and TransportUnits for example. Every warehouse deals with these terms, probably with
different characteristics but all projects know about them and their relationship to each
other. Not only a common domain model but also common services that provide business
functionality are part of this sub project.

e The third one is called OpenWMS.org TMS. Many warehouse projects are built as
automatic warehouses where PLCs are used to control the transportation of TransportUnits
from a Location A to a Location B. In contrast to manual warehouses, where transports are
carried out by the staff directly. All operations that are common in automatic warehouse
projects are implemented in the OpenWMS.org TMS sub project. It includes additional
domain classes and services that can be extended to project needs as well. Compared to
latter sub projects it is not mandatory to use this one.

* The last sub project is called OpenWMS.org WMS and targets all top-level warehouse
management requirements like order- inventory handling or stock management. It is not
mandatory to use this sub project, because there is no need for this in many warehouse
projects. Several projects already have an ERP system on top, that is capable to handle
WMS functionality.

Each of these sub projects consists of a backend part, that cares about the implementation
of the business functionality, and a client part that implements the Ul use cases and is used
by operators. How all these sub projects (modules) work together is part of the next chapters.

OpenWMS.org Y

Part I. Architecture

Vieles das grof3 ist kdnnte auch klein sein.
Dieses Gebirge kdnnte ein Stein sein,
vieles das weit ist kbnnte so nah sein,
vielesist Einsicht, wieviel ist Anschein?
(Xavier Naidoo)

To have a common understanding of the architecture and the principles of application layering, it is
important to clarify some terms before we start going into more detail. We often talk about modules,
bundles or components in different contexts. Regarding the architecture of OpenWMS.org we want to
distinguish between these terms and exactly define what each of these notions means.

Bundle (techn.): Our definition of a Bundle is of completely technical nature and defines in particular
an OSGi bundle. This is naturally spoken a jar file which contains Java classes and can be deployed
and started in an OSGi container. Typically each OSGi bundle includes a MANIFEST.MF file with
mandatory OSGi header entries - otherwise it would be a simple Java jar file.

Module (log.) A Module is per definition a collection of Bundles and other artifacts, to combine related
parts of an Application that belong together logically. A Module is not an artifact that exists physically,
it is more or less a definition to group artifacts. The Core Framework could be seen as a Module as
well as the TMS or the WMS Module, or something else you define as a logical group of items.

Flex Module (techn.) This kind of artifact is specific to the Flex Framework. Adobe Flex defines a
Module as an ActionScript or MXML component that implements the mx.modules.IModule interface.
A Flex Module can't run solely and needs to be loaded by the main Flex Application. This is the
concept of Adobe Flex modularization and shall be mentioned here for clarification. Each of our
delivered Modules includes a Flex Module - so far it needs to have an Ul part.

Flex Application (techn.) The Flex Application is the main Ul application that may exist only once
and can load other Flex fragments like Flex Modules or Flex Libraries. The Flex Application is
deployed within a Bundle (OSGi Web Bundle), packaged together with other Flex artifacts.

Flex Library (techn.) A Flex Library is a collection of ActionScript or MXML components that is
compiled into the Flex Application or into Flex Modules. Flex Libraries can also be linked at runtime
instead of compiling them statically. Doing it that way decreases the application size but slowes down
the application startup time.

Application (log.) The term Application implies the sum of artifacts be runnable as a single logical
unit that can be deployed in the runtime environment. Beside our own artifacts, 3rd party libraries
belong to the Application as well. The term Application does not suggest that it is a single technical
deployment unit (like a WAR or EAR file), it is just a definition for a group of artifacts.

OpenWMS.org 1

Chapter 1. The Big Picture

Figure 1.1, “Architecture of the OpenWMS.org Application” is a sketch of the whole
Application that represents how all different artifacts fit together and how they interact with
each other. Important to notice is the fact that we deal with two different kinds of layers. In
the vertical direction the layering is more technical oriented whereas the horizontal layering
is driven by the business domain. An application with too many layers implies a high degree
of complexity, therefore we reduced the amount of technical layers to a minimum. It's up to
you how you structure your new Modules and it is not required to follow this concept strictly.
More details about the technical layering follow in the next chapters.

OpenWMS.org Application

Flex Application £g Flex Module 23 Flex Module

Figure 1.1. Architecture of the OpenWMS.org Application

In horizontal direction the Modules have dependencies on each other. This is important to
consider whenever you assemble the Application or deploy/undeploy single Bundles. Module
dependencies between the standard Modules and the Core Framework are shown in Figure
2. One of the mayor functional requirements is decoupling the WMS part of the application
from the TMS part and vice versa. The Core Framework is the one and only Module where
all other Modules rely on.

OpenWMS.org 2

Chapter 2. Presentation Layer

In this chapter we'll focus on the presentation layer of the existent architecture and find out
how the Flex fontend application is combined with the service backend. It is essential to
understand how both worlds (Flex and Java) fit together and where things can be configured
and customized. We don't talk about the software design of the presentation layer, thats done
in the developers reference and shall not be mentioned here.

2.1. Architecture of the Presentation Layer

To better understand the presentation layer, we consider the Web Application Bundle as
well, even it is part of the backend tier. Let's start with some details about the architecture
of the presentation layer, most important for Project Engineers who setup and customize the
system. On the upper right side in Figure 2.1, “Architecture - Presentation Tier” we identify
our client-side application logic in form of Flex MXML components and ActionScript classes.
Both of these artifacts are compiled into ActionScript classes together with the GraniteDS
Service Declaration that is a MXML component as well. It's a simple Flex component that
solely includes GraniteDS RemoteObject declarations. Each declared object refers to a Flex
Service, configured in the standard Flex Service Configuration file (on the upper left side).
In turn a Flex Service definition consits of several Destinations with unique identifiers which
are mapped to an AMF Channel. This Channel is the port to the backend application and is
configured with an endpoint on the server (URL).

Adobe Flex Application

MAML & AS

GraniteDS Filter.

S—

Spring OSGi ApplicationContext
—J

OpenWMS.org 0SGi Webapplication Bundle

Figure 2.1. Architecture - Presentation Tier

Because we are talking about a web application it is more as natural that a Servlet is mapped
to a particular URL pattern on the server side. Two Servlet Filters are registered to scan
incoming requests before the GraniteDS Servlet does handle them. The first Servlet Filter is
responsible for the integration of Spring Security and delegates to a chain of standard Spring
Security handler beans for authentication and authorization purpose. The second Filter in

OpenWMS.org 3

Presentation Layer

the chain is the GraniteDS context filter which handles deserialization of incoming AMF3
requests, context population and serialization of the response respectively. Afterwards the
request can be processed by GraniteDS' Servlet that resolves a proper Service Invoker from
its Service Factory and delegates processing accordingly. We don't go into the details of
GraniteDS here hence we pursue with the OSGi service binding. At all, GraniteDS knows
about the Flex Service Configuration and the configured Destinations and tries to reference
a Spring bean within the Spring ApplicationContext by name. The name of the bean is part
of the Destination configuration and must match an injected OSGi service reference. There
is no explicit bean instantiation done in the Spring XML bean configuration, all services are
imported from the OSGi service registry exclusively.

OpenWMS.org 4

Chapter 3. Backend Tier

Rushing forward to the backend part of the application. Its quite more interesting hence we
spend multiple sub sections for each of the layers. How OpenWMS.org is structured is more
important for Project Engineers who assemble the application rather than for Operators and
other users. If you are implementing own services or whole Modules than you should join the
project and become a developer to access the developer section and read more about the
technical internals. In the following sections we explain how the actual layering is set up -
less about the design concept and implementation concepts.

3.1. Architecture of the Backend Tier

As already mentioned in the main concept on the website as well as in the overview section
we strongly rely on the traditional layering architecture, splitting the business tier into a service
and a data access layer and bundling domain objects together to be used in all layers.
Persistent Domain Objects like Users, Modules, TransportUnits or Orders are part of the
cross-cutting Business Domain Object layer. Each Module comes with a set of it's own domain
classes suitable for the Module's domain. Splitting technical layers into domain Modules is
a trade-off between high cohesion and lose coupling, thats why each set of domain classes
is specific to it's Module.

Service Provider Interface

Spring Service Implementation

a Business Service Layer w |
2 =
o) = |
& =
5 Repository = |
':‘:2 JPA Provider JPADAO Implementation g -

(=1l
2]
g, Repository Layer (Integration) E j
= .

All Modules

Figure 3.1. Architecture - Backend Tier

Configuration Services on the right side are used in all layers to access global configuration
data. A global scope spans all layers in all Modules, not only the Core Framework Module. It
is a central service that comes with the framework. Providing an access point to the persistent
storage is part of the Infrastructure Service layer that is arranged at the bottom of Figure 3.1,
“Architecture - Backend Tier” and exists only once in the whole application - but can be
referenced by all other Modules not only the framework.

OpenWMS.org 5

Backend Tier

3.2. The Service Layer

The Service Layer (on top of Figure 3.1, “Architecture - Backend Tier”) provides functionality
regarding the business requirements - corse grained services with transactional behavior.
These services interact with other services within the same Module or with the underlying
Repository Layer (Data Access Layer) to perform data access operations. A common goal
is to minimize dependencies between services, also it is not always possible to eliminate
them at all. Services offer their business functionality via a thin interface layer to outer
clients (e.g. the web application) and shield the interal implementation. In the past we
implemented two different service implementations, one with the Spring Framework and a
second in EJB technology. It was quite convenient to switch between both service layer
implementations without the need to change something on the client application. Note that
Figure 3.1, “Architecture - Backend Tier” does not reflect the deployment concept and does
not suggest different Bundles for both parts of the Business Service Layer even if it is so.
It is up to you how you structure your new Modules, probably it is more feasable for you to
combine service interface and implementation. However it's a good practise to implement
against interfaces. No matter how you build your deliverables later on.

3.3. The Data Access Layer

The Data Access Layer, or more fashioned the Repository Layer is a so called Integration
Layer because it encapsulates the actual data access operations from the Service Layer
and thus increases robustness of the implemented business logic. In former days it was
essential to cut-off this functionality from the intrinsic business logic. Lately we already have
an abstraction with the standardized Java Persistence API, so you could argue to remove this
layer. Our suggestion is, if you feel you write duplicated code or code that just delegates to
JPA's EntityManager, then you can omit this layer in your own Modules without doubts. Like in
the Business Service Layer we code against an interface definition (Repository) to offer data
access functionality. The implementation itself (JPA DAO Implementation) is specific to the
JPA standard specification and does not depend on y particular JPA provider (like Hibernate
or Eclipselink). But at runtime we need to have an underlying JPA provider, that's why there
is another part in the Repository Layer - the JPA Provider. This is always a 3rd party library
that comes with OpenWMS.org - by default we are using Hibernate as provider. But it shall
also be possible to switch to Eclipselink or another JPA compliant implementation.

OpenWMS.org 6

Part Il. Installation and Deployment

OpenWMS.org

Chapter 4. Prerequisites for Installation

Toinstall and run OpenWMS.org, an application server and a database is needed. You should
already have installed a version of Java SE 6 before you follow the next steps.

Server Requirements:

Install everything that is needed to run SpringSource dmServer™, for more information have
a look at the SpringSource dmServer™ website [http://www.springsource.com/products/
dmserverl].

Client Requirements:

Because the client part of OpenWMS.org is implemented with the Adobe Flex framework, the
client must be able to install the Adobe Flash Player Plugin [http://get.adobe.com/flashplayer/]
in a minimum release of version 9.0.x. It is supposed to run the application within a web
browser, that is capable to install this plugin. For more information about this please visit
Adobe Flash framework [http://get.adobe.com/flashplayer/] website.

Most modern web browsers are able to install the Adobe Flash Plugin [http://get.adobe.com/
flashplayer/]. On handheld devices like smartphones or label scanners it is not a standard
at all. Please check the list of supported devices on Adobes website [http://www.adobe.com/
products/flashplayer/systemreqs/] directly. Nevertheless if you have to support a device that
is not capable with the Flash Player Plugin, you can rely on the OpenWMS.org backend
services and implement the necessary views in a technology of your choice.

Never forget: Implementation of screens, views and dialogs must not be time consuming
and should be done with the fewest effort as possible, because frontend technology often
changes ;-)

4.1. SpringSource dmServer™

OpenWMS.org is dedicated to run on SpringSource dmServer™ application server (for
simplification called dmServer from now). This server guarantees a stable and reliable
environment to run OSGi applications on. It makes life easier when you have to identify
OSGi dependency problems and it comes with sophisticated tracing and failure capture
(FFDC) mechanism. It is delivered as a pre-configured OSGi container that saves your time
compared to setting up a base OSGi implementation like Eclipse Equinox or Knopplerfish. All
necessary bundles are already included, like Apache Tomcat web container, Spring Dynamic
Modules for OSGi and obviously the Spring Framework itself. SpringSource dmServer™
support different application deployment formats like PAR, Plans and Library Definition files
that are mandatory to run OpenWMS.org and will hopefully become a standard in the next
OSGi specification.

OpenWMS.org is currently tested on version 2.0.5.RELEASE.

4.1.1. Installation of SpringSource dmServer™

To download and install dmServer please visit the download site [http:/
www.springsource.org/dmserver] or click the direct link to version 2.0.6.RELEASE [http://
dist.springframework.org/release/DMS/springsource-dm-server-2.0.6.RELEASE.zip]. Just

OpenWMS.org 8

http://www.springsource.com/products/dmserver
http://www.springsource.com/products/dmserver
http://www.springsource.com/products/dmserver
http://get.adobe.com/flashplayer/
http://get.adobe.com/flashplayer/
http://get.adobe.com/flashplayer/
http://get.adobe.com/flashplayer/
http://get.adobe.com/flashplayer/
http://get.adobe.com/flashplayer/
http://get.adobe.com/flashplayer/
http://www.adobe.com/products/flashplayer/systemreqs/
http://www.adobe.com/products/flashplayer/systemreqs/
http://www.adobe.com/products/flashplayer/systemreqs/
http://www.springsource.org/dmserver
http://www.springsource.org/dmserver
http://www.springsource.org/dmserver
http://dist.springframework.org/release/DMS/springsource-dm-server-2.0.6.RELEASE.zip
http://dist.springframework.org/release/DMS/springsource-dm-server-2.0.6.RELEASE.zip
http://dist.springframework.org/release/DMS/springsource-dm-server-2.0.6.RELEASE.zip

Prerequisites for Installation

unzip the downloaded ZIP file to an arbitrary location on your harddrive to finish the
installation. SpringSource propose to create an environment variable called SERVER HOVE that
points to the installation directory (this variable is referenced in the rest of this document):

$ export $SERVER HOVE=<PATH TO UNZI PPED DM SERVER>

Now you should be able to run dmServer:

$ cd $SERVER_HOME/ bi n
$./startup.sh

To stop a running dmServer instance press CTRL-C.

4.2. PostgreSQL Database Server

PostgreSQL Database Server is the one we have chosen to develop OpenWMS.org.
Of course OpenWMS.org is database independent so you can switch to a database
of your choice. We have chosen PostgreSQL DB because it is a mature and proven
database server formerly branched from IngresDB, that is now opensource and comes
with a proper administration tool. Installation and running the server is described in the
PostgreSQL documentation [http://www.postgresgl.org/docs/8.4/static/index.html] . Simply
download [http://www.postgresgl.org/download/] the latest version (9.x) and install it on your
machine.

4.2.1. Post Installation Steps

When you have installed the database server and it starts up correctly than you have to
add a database user and an instance to run OpenWMS.org. Extend your environment $PATH
settings to the <POSTGRES_I NSTALL_DI R>/ bi n directory or change your current directory to that
location in order to create all the resources.

Create a new LOGIN ROLE with name and password set to oPENWE (The standard
PostgreSQL database username is set to postgres. If you have changed this before, you
must also change the -U parameter in the following commands).

$./createuser -Upostgres -W-P OPENVWES

First of all you are prompted to specify a new password for the login role oPENWS, set it to
OPENWWS and proceed. The new role doesn't need to inherit superuser grants.

As next we are going to create a database instance within your server installation. Probably
you will install other instances e.g. for a test environment on the same server, but for now
we are only creating one instance.

$./createdb -Upostgres -W - OCOPENWS OPENVWS

Executing this command will create a new database instance with the name oPENVS owned
by the recently created user oPENWWS. Congratulations, the database is now installed properly
to run OpenWMS.org!

The values of username, password and database name used in the commands above are
the default values. Of course you can choose different names and configure the application
to take that ones.

OpenWMS.org 9

http://www.postgresql.org/docs/8.4/static/index.html
http://www.postgresql.org/docs/8.4/static/index.html
http://www.postgresql.org/download/
http://www.postgresql.org/download/

Prerequisites for Installation

4.3. Using Other Databases

By default OpenWMS.org is configured to connect to a PostgreSQL Database
Server. Other databases are supported as well but have to be configured
in the OSGi Configuration Service properties file that is shipped with
the application. All application properties are stored in one Java properties
file ($SERVER_HOVE/ repository/usr/org. openwrs. conmon. i nfrastructure. configuration-
x.y.z.properties). Properties regarding the database connectivity are prefixed with 'j dbc. .

j dbc. dri ver d assNane=or g. post gresql . Dri ver

jdbc. url =j dbc: post gr esql : OPENVWE

j dbc. user nane=0OPENVWS

j dbc. passwor d=OPENVWS

j dbc. di al ect =or g. hi bernat e. di al ect. Post greSQLDi al ect
j dbc. dat abase=POSTGRESQL

j dbc. properti es=hi ber nat e. connecti on. conpati bl e=7. 1
j dbc. per si st enceUni t =QpenWVS- t est - dur abl e

Detailed information about the intention of each property can you find in the developer
manual.

OpenWMS.org 10

Chapter 5. Download and Installation

5.1. Download OpenWMS.org

All versions of OpenWMS.org can you find here [http://www.openwms.org/docs/
downloads.html] (http://www.openwms.org/docs/downloads.html)

Please visit the download page and download the latest version of OpenWMS.org.

5.2. Unpack and Install OpenWMS.org

Unzip the downloaded file to your harddrive.

Inside the unzipped folder you find two directories containing all the bundles that have to
be installed in dmServer. Please copy all files of the bundl es directory to dmServer's user
repository (usually to $SERVER_HOME/ r eposi t ory/ usr). Within the pickup directory you find the
OpenWMS.org web application that has to be copied to dmServer's hot-deployment directory
(usually to $SERVER HOVE/ pi ckup).

$ cp bundl es/* $SERVER HOWE/ r eposi t ory/ usr

$ cp pi ckup/* $SERVER HOME pi ckup

In a third directory you find the license agreement files of all third party libraries that are
shipped with OpenWMS.org. Please read and accepts the license agreements before using
OpenWMS.org.

Last but not least, you have to tell dmServer to start all bundles listed in the OSGi Plan file
org.openwms.app.plan. Therefor you must add this plan to the list of plans in dmServers
config file com.springsource.kernel.userregion.properties.

Open $SERVER_HOVE/ confi g/ com spri ngsour ce. ker nel . userregi on. properties

Scroll down to the last line in this file where the initial Artifacts are listed and add the
or g. openwns. app. pl an file. It should looks like:

initial Artifacts=..., repository:plan/org.openwrs. app. pl an, ...

Without this entry dmServer will not start our bundles in the repository directory, but will start
the Web Application. Due to the lack of backend services the OSGi container won't be able
to resolve the service dependencies of the frontend application and will throw an exception.

OpenWMS.org 11

http://www.openwms.org/docs/downloads.html
http://www.openwms.org/docs/downloads.html
http://www.openwms.org/docs/downloads.html

Chapter 6. The First Start

6.1. Running OpenWMS.org

If you've completed all steps successfully you should now be able to start SpringSource
dmServer™ with the installed OpenWMS.org application.

$./ $SERVER HOVE/ bi n/ startup. sh

(We assume that you have installed the server and the database with default configuration).

After dmServer's Kernel is loaded, all application specific bundles are installed and shall come
up without any errors. When everything is started correctly you should see at least the line:

Started bundl e 'org. openwns. zz.client.flex.wapper' version 'x.y.z'

This means, dmServer was able to install and start the web application bundle correctly. Open
a web browser and switch to http://localhost:8080/openwms to verify that your installation is
successful. The login dialog of OpenWMS.org should appear now.

openwms.org

JUGHIWIIND.UIL = :
S e i S | -

Application Login

LOGIN

User openwms

Passworg — FwEEEE

Mot logged In

Login

N

Figure 6.1. Application Login Dialog

OpenWMS.org 12

http://localhost:8080/openwms

The First Start

6.2. Logout or Lock the Application

After you have successfully logged in the application you see some vertical oriented buttons in
the header part of the portal. These buttons will not change, doesn't matter which screen you
open. The 'Logout' button is used to logout the currently logged in User from the application.
All screens are closed, non-saved data is discarded and the User is logged out and forwarded
to the Login screen (Figure 6.1, “Application Login Dialog”) again. Another way to leave the
application is to just lock the application for other Users. In this place, an opened screen
closes as well, but you can continue your work when logging in again. Unsaved data is still
there after login. Notice, that only the User who locked the screen can unlock it again, other
Users can not login to a locked application.

Figure 6.2. Application Header

OpenWMS.org 13

Part Ill. The CORE module

The OpenWMS.org CORE module provides management functionality regarding the base framework
requirements like User, Role and Module management. All enterprise applications need to have some
kind of security management. Authentication and authorization are essential features that have to be
handled by the main application itself. In particular, fine-grained security level adjustment must be
possible as well.

OpenWMS.org 14

Chapter 7. Module Management

7.1. Overview

From the main application actions bar open Application->Modules to display the Module
Management view. On this screen a System Operator or Project Engineer defines all Modules
of the project. One of the most important requirements on OpenWMS.org is modularization.
That's why we often talk about modules either in the frontend part of the application or in
the service layer (backend). An Application Module is a defined set of views, services and
domain objects that belong logically together. Some modules have dependencies to other
modules where they operate on.

openwms.org

< 77 T I
B -
W l_‘l;t}ﬁ?{éa ‘f&— r. "'."' '.Fﬂl

Modules o 2| @ | B

COMMON Module

TMS Module Modulename s COMMON Module

URL # org.openwms.commen.flex.module.swf

Description Common base functionality

Load on Startup |

To change the startup order of Modules drag and drop the Madules In the list.

Figure 7.1. Module Management View

7.2. Defining new Application Modules

On the main Module Management View press the button New ¥ to define a new Application
Module. Now you have to enter a minimum set of information that is necessary to locate and
run the Application Module. Required fields like the Modulename and the URL are marked

OpenWMS.org 15

Module Management

with a red asterisk and must be provided to start up the module correctly. After you have done

your changes click Save & to save the entries in the database.
Table 7.1. Definition of Module properties

Input field Description

Modulename The module name is an unique identifier of
the Module within the application. Please
provide a proper name that describes the
Module in a short term. For example:
COMMON Module

URL The URL is mandatory to locate and load
the Module. It is not mandatory that a
Module is shipped with the application,
it can also be loaded from another
application domain. If the Module is
packaged with the application, just use
the filename of the Shockwave (SWF) file,
e.g. org.openwms.common.client.flex.swf,
including the file extension (.swf). If
your Module is stored in a different
application domain like the main
application than you have to provide
the full URI (unique resource identifier),
e.g. http:/mww.myCompany.com/openwms/
org.openwms.common.flex.client.swif.
Under these circumstances please notice
that the application security policy must
allow access to your foreign domain (see
Crossdomain configuration)

Description The description field is not required, but
you should provide short information about
the Application Module, e.g. for what it is
needed and what dependencies it has to
other modules.

Load on Startup Check this field if you want to start your
Module the next time the application starts

up.

7.3. Change existing Application Modules

In the same view you can do changes on existing module definitions. Just choose the
Application Module you want to change and the detail information of the chosen module is

shown in the text fields next to the list of modules. Change the properties and press Save =
to write the information to the persistent storage. Be aware of uniqueness of the Modulename
and the URL identifier.

OpenWMS.org 16

Module Management

Removing an existing module can be done that way too, just choose the module to delete

and press the Delete /—= button.

Your Changes will take effect the next time you reload the application.

7.4. Manually Loading and Unloading Application Modules

To try out if a module is able to be loaded on startup, you should try to load it manually before.
r3—

Just select the Module you want to load and press the Load .-—- button. If the module was

already loaded, the buttons icon changed -—li and is used to Unload. Pressing the Unload

button & unloads the current selected module. After an Application Module was successfully
loaded into the application domain you should notice that the main application actions bar is
populated with a couple of menu items provided by the new module. What you can't recognize
so far is that the list of views was updated, too. After unloading a module, the main application
actions bar is reorganized and only show the menu items of all currently loaded modules.

OpenWMS.org 17

Chapter 8. User Management

8.1. Overview

From the main application actions bar choose Application->Users to open the User
Management View. After the view is loaded a list of Users appears on the left-hand side. In
the right panel all details of a selected User are shown. In a completely new installation no
Users are defined, hence the list and the detail form are both empty. The User Management
is used to add new Users and to modify or delete existing ones. Furthermore you can set
User details (UserDetails), change a User's password, or add an image to an User.

openwms.org

Application

cwegener
Christine Wagener

elaesser
Emst Lisser

fgyger
Flarian Gyer

gbusch
Gerhard Busch

hfreiberger
Helko Freiberger

hscherrer
Heiko Scherrer

a | 0| S b

jlang
Joachim Lang

kjung
Karl-Heinz Jung

mspolzer
Malk Spaizer

pkieper
Pater Kieper

o3 > |8

plang
Fatrick Lang

-
—a

tdemoughin
Tibault Gemaughin

trussell
Tina Russal

A
) B

[+]

&

Fullname

Description

Fhone No.
M
Department
Office

Sex

Comment

Expliration Date

Roles

Username = jlang

Joachim Lang

UX Deslgner

+44 78 156 B1 456

jlang

USKES

A-101

(=) Male
() Female

|»] Enabled

|| Locked

ROLE_ADMIN

Figure 8.1. User Management View

Table 8.1. Actions bar of the User Management View

Icon

&

Description

Add a new User.

b3

Delete an existing User, or an User entry that
was created but not saved before.

OpenWMS.org

18

User Management

Icon Description
DE.'- After changing an User's data you can save

your changes by pressing the save button.

,: Reload and refresh all Users from the
persistent storage.

Change the password of an existing User.

4 :
The operation cannot be done on an
unsaved User.

B Change the image of an existing User.

8.2. User Details

By default some detail information can be attached to each User profile. Required fields are
marked with a red asterisk and must be set to successfully save the changes in the persistent
storage. The Username is a system-wide unique identifier that can be changed at any time
but must be set initially.

Table 8.2. Description of User Details input fields

Input field Description

Username Unique identifier of the User.

Fullname Fullname of the User.

Description Description text of the User.

Phone The Users phone number.

IM The Users IM adress.

Department The department the User is working for.
Office The office the User is working in.

Sex Male or female.

Comment Some comment stored with the User.
Enabled The User is only able to login when he or

she is enabled. This way it is possible for a
System Operator to forbid an User to login.

Locked An User is being locked by the application
automatically after he or she tries to login
with an invalid password several times. The
number of invalid retries is set in the system
properties.

Expiration Date A System Operator can define an expiration
date for an User to allow login for a defined

OpenWMS.org 19

User Management

Input field Description

period of time. When this field is left empty
the account never expires.

Roles Usually an User is assigned to Roles.
Assigned Roles are listed in this list
but cannot be changed here. Changing
an User's Roles is done with the Role
Management Screen.

8.3. Change User's Image

After clicking the Change Button (.!ﬁ) a popup window appears and your are prompted to
enter a valid path to an image file, that is uploaded to the server afterwards. When the upload
succeeds the new image file is directly assigned to the selected User, there is no need to
save the User anymore. The width of the image is resized to max. 100 pixel and a height
to max. 150 pixel.

File Upload
Upload URL :
Selected File :
Progress :
LOADING 0%
Browse Close

Figure 8.2. Changing the Users image

8.4. Change User's Password

To change the Users password, select an User and choose Change Password (i) from the
actions bar. In the dialogue Figure 8.3, “Changing the Users password” reset the password
and click on Change.

Change User Password

Please enter a new Password for this User

New Password :

Re-type Password :

Change Cancel

Figure 8.3. Changing the Users password

OpenWMS.org 20

User Management

8.5. System User Account

A System User account exists by default. This particular User profile is especially dedicated
to Project Engineers and shall only be used for installation and maintenance purpose. The
System User has full access to the application without any security restrictions. By default
Username and password of the System User are both set to oPENvB. How to change these
credentials is described in the Developer Manual.

8.6. User Preferences

Once you have logged in the application, your username is displayed in the upper right corner
of the application header. Click on your username to open a dialogue with your personal
user settings (Figure 8.4, “Change User Preferences”). All Users, beside the SystemUser,
can manage their own settings, like setting a default language or change the UserDetails.
Changing the current password to login is possible as well.

Change User Preferances

User

Fullname Joachim Lang

Language en_us L4

Description UX Deslgner

Phone No. +44 78 156 B1 456

M jlang

Department USKES

Office A-101

New Password :

Re-type Password :

Save Cancel

Figure 8.4. Change User Preferences

OpenWMS.org 21

Chapter 9. Role Management

9.1. Overview

Generally the term Role is a synonym for a group of Users. Having some Roles in each project
is always recommended. For example, you could define a separate Role for Operators,
System Operators and Project Engineers. Doing so you could assign Users to Roles and
afterwards assign Security Objects, like Grants to each Role. Doing it that way is much
more convenient and requires less administration than assigning each Grant to each User.
New User accounts can easily tied to already existing Roles. Defining a set of Grants to a
Role is done once per Role. This is standard security management in multi-user enterprise
applications.

The Grants in Table 9.1, “Table of Grants regarding Role Management” determine the actions
an User can perform on Roles. All Grants are stored in the secur ed- obj ects. xni file of the
main Flex Application Module.

Table 9.1. Table of Grants regarding Role Management

Grant Key Description

APP_Role _Management Permission to open the Role Management
Screen.

APP_add_roles_button Ability to add new Roles.

APP_save_role_button Ability to save changes on a Role.

APP_remove_role_button Ability to remove an existing Role.

APP_assign_grants_button Assign to or remove Grants from a Role.

APP_assign_users_button Assign to or remove Users from a Role.

9.2. Role Management Screen

From the main application actions bar click Application->Roles to open the Role Management
view. Purpose of this management view is to declare security Roles and assign individual
Grants and Users to each of them.

OpenWMS.org 22

Role Management

- ey

JeNWmMS.orgs, =

“r=-takethelead!

openwms.org

Application

Roles & & 2 =2

| Create a new Role |

Name Description
ROLE_ADMIN Administrators role
ROLE_TEST Users role

Assigned Grants [,

Open the screen of Location Types {COMMON_Location_Types)

Permission to change the maximum number of Transport Units for a Locat
Ability to change the password of an existing User (APP_change_user_pw.
Permission to save changes on a Transport Unit Type (COMMON_save_tut
Ability to save changes on a Preference (APP_save_preference_button)
Permission to save changes on a Location (COMMON_save_location_buttol
Ability to load or unload Modules (APP_load_module_button)

Assign Grants to a Role (APP_assign_grants_button)

Permission to create a new TransportOrder {TMS_create_TO_button)

Assigned Users & &

Joachim Lang (jlang)

Helko Scherrer (hscherrer)

| N

Figure 9.1. Role Management View

Table 9.2. Actions bar of the Role Management View

Icon

£
2

Description

Open a dialogue to create a new Role with
name and description.

Delete an existing Role.

;2

After double-clicking a Role you can change
data and press Save to save your changes.

o

P o

Reload and refresh Role information from the
persistent storage.

Assign Users to a selected Role. Opens a
dialogue to add Users to the Role.

Select already assigned Users you want to
remove from the selected Role and press
this button to remove their Role membership
immediately.

OpenWMS.org 23

Role Management

Icon Description

Select a Role and press this button to assign
[-£4] .

one or more Grants to the Role. An dialogue

opens to assign or remove Grants from a

Role.

9.3. Creating a new Role

To create a new Role press the 'Create' button of the actions bar (J%). In a simple dialogue,
you have to provide the name of the new Role and an optional descriptive text. After the Role

is created the roleName is prefixed with 'ROLE .

Name OPERATORS
Description Operators role
Create Cancel

Figure 9.2. Create a Role

9.4. Modifing an existing Roles

Existing Roles can also be modified. To change the role name or description, just double
click the Role to open a dialogue, like shown in Figure 9.3, “Modify a Role”, where you can

change the values as desired.

Name ROLE_ADMIN
Description Administrators
role H
Save Cancel

Figure 9.3. Modify a Role

9.5. Assigning Grants to a Role

If you already have a Role defined, you are now able to assign Grants to this Role. Just

select the Role and press the 'Assign Grants' button (i#). A dialogue opens that lists all non-

OpenWMS.org 24

Role Management

assigned Grants on the left side and all currently assigned Grants on the right side. Choose
the Grants you want to add or remove to a Role and press one of the shift buttons in the
middle. After you confirm the dialogue you have to save the Role. Your changes do not take
affect without saving the Role explicitely, because you could have done changes to the Role

before.
All Grants Assigned Grants
APP_User_Management - Permission to creal * APP_Role_Management - Permission to cancel
APP_Module_Management - Permission to se APP_Preferences - Permission to manage all Pre

APP_add_user_button - Ability to add a new
APP_delete_user_button - Ability to delete ai I:>
-
APP_save_user_button - Ability to save chan <j
APP_change_user_picture_button - Ability to
APP_change_user_pw_button - Ability to cha
APP_add_roles_button - Ability to add new R

APP_save_role_button - Ability to save chani| « |

Accept Cancel

Figure 9.4. Assign Grants to a Role

9.6. Assigning Users to a Role

Role Management does only make sense when you assign Users to Roles and manage
access control through Roles. So go ahead and add some Users to a defined Role. Press

the 'Assign Users' button (r_-nﬁ) and do it like you did before. Nearly the same dialogue opens
where you can add or remove one or more Users from a selected Role.

All Users Assigned Users
cwegener - Christine Wegener - hscherrer - Heiko Scherrer
elaesser - Ernst Lasser jlang - Joachim Lang

fgyger = Florian Gyer

gbusch - Gerhard Busch I:>
hfreiberger - Heiko Freiberger <j
kjung - Karl-Heinz Jung P
mspoizer - Maik Spoizer
plang - Patrick Lang

pkieper - Peter Kieper -

Accept Cancel

Figure 9.5. Assign Users to a Role

OpenWMS.org 25

Chapter 10. Preference Management

10.1. Overview

All enterprise applications have some kind of configurable application preferences or settings,
nevertheless whether they come from a file, a database or somewhere else. In OpenWMS.org
we call these setting parameters Preferences. A Preference is always in a certain scope,
valid for a particular part of the application. So far, we have defined four different types of
Preferences:

» ApplicationPreference

An ApplicationPreference is in global application scope. It is visible from all parts of the
application and valid for all entities until it is overruled by a more particular Preference

* ModulePreference
A ModulePreference is only visible and valid for the Module it is assigned to.
« RolePreference

This kind of Preference is only valid for a certain Role. Each Role can have a set of
RolePreferences defined.

* UserPreference

An User can have her own Preferences, too. This type of Preference which is assigned to
a particular User is a so called UserPreference.

An authorized User is able to create new Preferences, modify or delete existing ones. The
Grants in Table 10.1, “Table of Grants regarding Preferences Management” determine the
actions an User can perform. All Grants are stored in the secur ed- obj ect s. xm file of the main
Flex Application Module.

Table 10.1. Table of Grants regarding Preferences Management

Grant Key Description

APP_Preferences Permission to open the Preferences
Management Screen and manage all
Preferences.

APP_add_preference_button Ability to add new Preferences.

APP_delete_preference_button Ability to remove Preferences.

APP_save_preference_button Ability to save changes made on a
Preference.

OpenWMS.org 26

Preference Management

10.2. Preference Management Screen

From the main application actions bar click Application->Preferences to open the Preference
Management view. On the left-hand side of the sreen all Preferences are grouped by their
type in an accordion container. Details of a selected Preference are shown right beside.

Preferences @ 2

Application - defaultLanguage

Description

Owner

String Value
Float Value
Minimum Value
Maximum Value

From Flle

openwms.org

defaultLanguage

Global language setting for all users. Value
must be some of the localization keys, like
en_USs, de_DE

| BN

Figure 10.1. Preference Management View

Table 10.2. Actions bar of the Preference Management View

Icon

E

Description

Open a dialogue to create a new Preference
with all the required information like the
preference key, a value and an owner (like
Application, Module, Role or User).

Delete an existing Preference.

i) Save changes you did on the currently
' chosen Preference.

.-g, Reload and refresh all Preferences from the

persistent storage.

OpenWMS.org 27

Preference Management

Each Preference must have at least a key and a type assigned. Preferences of type
ModulePreference, RolePreference and UserPreference additionally need to have an owner.
The key and owner fields are unique along all defined Preferences and cannot declared
twice - be aware of that. For example, it is not allowed to define two Preferences with a
key 'defaultLanguage' within the same Module 'CORE', but it is still allowed to have this
Preference defined for two separate Modules 'CORE' and 'Common'.

Table 10.3. Description of Preference Details

Input field Description

Key Unique identifier of the Preference within the
type of Preference.

Description Description text of the Preference.

Owner An owner where the Preference belongs to.

String Value An alphanumeric value.

Float Value A numeric value.

Minimum Value A possible minimum value. Used to define a
range.

Maximum Value A possible maximum value. Used to define a
range.

From File Indicates, whether the Preference is defined
in a file or created by the User.

10.3. Create a new Preference

Clicking the button to create a new Preference (ﬂi‘\iﬂ) opens the dialogue shown in Figure 10.2,
“Create a Preference” to add a Preference and store it in the database. Actually the same
fields can be set like in the details page of the overview screen Figure 10.1, “Preference
Management View".

OpenWMS.org 28

Preference Management

| Greate Preference

Type Application o
Key

Description

Owner

String Value

Float Value

Minimum Value

Maximum Value

Create Cancel

—
Figure 10.2. Create a Preference

10.4. Modify an existing Preference

To make changes on an existing Preference, select that one from list on the left side of the
screen. On the details page you can modify the values of the selected Preference. Notice
that the key of an existing Preference cannot be changed after it is created. To save your

work back to the system click on the 'Save' button ('-'!'—'iﬂ) in the upper actions bar.

10.5. Delete an existing Preference

Removing an existing Preference is simple as well. Just select the Preference to remove

and click on the 'Remove' button (l-ﬁ‘ni.l)_ No confirmaton will be shown, hence be careful with
deletion of existing entries.

OpenWMS.org 29

Appendix A.

Glossary

ApplicationPreference

Barcode

Email

Grant

Location

LocationGroup
LocationGroupState
LocationType

Module

ModulePreference

An ApplicationPreference is used to store a configuration
setting in application scope. The table model of an
ApplicationPreference spans an unique key over the columns
C_TYPE and C_KEY. It's counterpart in the context of JAXB is
the applicationPreference element.

A Barcode is a printable item with an unique identifier to
label TransportUnits. The identifier has a defined number of
characters whereas these characters are aligned either left or
right. Non filled positions of a Barcode are padded with a so
called padding character.

An Email represents the email address of an User.

A Grant gives permission to access some kind of application
object. Grants to security aware application objects can be
permitted or denied for a certain Role, depending on the
security configuration. Usually Grants are assigned to a Role
and on or more User s are assigned to each Roles. A Grant
is security aware, that means it is an concrete SecurityObject.
Permissions to Ul actions are managed with Grants.

A Location, represents some physical as well as virtual place in
a warehouse. Could be something like a storage location in the
stock or a location on a conveyer. Also virtual or error locations
can be modeled with a Location entity. Multiple Locations are
grouped to a LocationGroup.

A LocationGroup is a logical group of Locations, grouping
together Locations with same characteristics.

A LocationGroupState defines possible states used for
LocationGroups.

A LocationType is the type of Locations with same
characteristics.

A Module represents an Adobe Flex Module and is used to
store some basic information about that module, i.e. a hame,
an URL where the module from, or whether the Adobe Flex
Module should be loaded on application startup.

A ModulePreference is used to store configuration settings
in Module scope. The table model of an ModulePreference
spans an unique key over the columns C_TYPE, C_OWNER

OpenWMS.org 30

Preferences

Problem

Role

RolePreference

Rule

SecurityObject

SystemUser

Target

TransportUnit

TransportUnitState

TransportUnitType

TypePlacingRule

and C_KEY. It's counterpart in the context of JAXB is the
modulePreference element.

An instance of a Preferences represents the root of a
preferences XML file and aggregates all other types of
preference.

A Problem is used to signal an occurred failure.

A Role is a group of Users. Basically more than one User
belong to a Role. Security access policies are assigned to
Roles instead of Users.

A RolePreference is used to provide settings specific to an
Role . These kind of Preferences is valid for the assigned Role
only. Users assigned to a Role inherit these RolePreferences
but a RolePreference can be overruled by an UserPreference.
RolePreferences can be defined within a preferences file but
also be created with the UI.

A Rule used as marker interface.

A SecurityObject is the generalization of Roles and Grants and
combines common used properties of both.

A SystemUser is granted with all privileges and omits
all defined security constraints. Whenever a SystemUser
logs in, she is assigned to a virtual Role with the name
ROLE_SYSTEM. Furthermore this kind of Role is immutable
and it is not allowed for the SystemUser to change her
UserDetails or UserPassword. Changing the UserPassword
has to be done in the application configuration when the project
is setup.

A Target is either a physical or a logical endpoint of any kind
of order in a warehouse. A TransportOrder has a Target set, to
where a TransportUnit has to be moved to.

A TransportUnit is an item like a box, a toad, a bin or a palette
that is moved around within a warehouse and can carry goods.
Used as container to transport items like LoadUnits. It can be
moved between Locations.

A TransportUnitState defines a set of states for TransportUnits.

A TransportUnitType is a type of a certain TransportUnits.
Typically to store some static attributes of TransportUnits, such
as the length, the height, or the weight of TransportUnits. It is
possible to group and characterize TransportUnits.

A TypePlacingRule is a Rule that defines which types of
TransportUnits (TransportUnitTypes) can be put on which type

OpenWMS.org 31

TypeStackingRule

Unit

UnitType

User

UserPassword

UserPreference

of Location (LocationType). A privilegeLevel is defined to order
a list of allowed LocationTypes.

A TypeStackingRule is a Rule that defines which
TransportUnitType can be stacked on other types. Additionally
a maximum number of TransportUnits can be defined.

A definition of any kind of unit used in the application. In
general, Units are defined by a particular type of UnitType and
a value. For example 42 grams is a weight, whereas weight is
the Unit.

An UnitType is the type definition of an Unit. Each UnitType
defines a base Unit of it's character. For example a UnitType
of weights can define grams, kilograms or tons.

An User represents a human user of the system. Typically
an User is assigned to one or more Roles to define security
constraints. Users can have their own configuration settings in
form of UserPreferences and certain user details, encapsulated
in an UserDetails object that tend to be extended by projects.

Is a representation of an User together with her password.
When an User changes her password, the current password is
added to a history list of passwords. This is necessary to omit
Users from setting formerly used passwords.

An UserPreference is used to store settings specific to an User.
It is always assigned to a particular User and not accessible
from, nor valid for, other Users. UserPreferences cannot be
overruled by any other type of Preferences.

OpenWMS.org 32

	User Documentation
	Table of Contents
	Preface
	1. Scope
	2. Target Audience
	3. Project and Sub Projects

	Part I. Architecture
	Chapter 1. The Big Picture
	Chapter 2. Presentation Layer
	2.1. Architecture of the Presentation Layer

	Chapter 3. Backend Tier
	3.1. Architecture of the Backend Tier
	3.2. The Service Layer
	3.3. The Data Access Layer

	Part II. Installation and Deployment
	Chapter 4. Prerequisites for Installation
	4.1. SpringSource dmServer™
	4.1.1. Installation of SpringSource dmServer™

	4.2. PostgreSQL Database Server
	4.2.1. Post Installation Steps

	4.3. Using Other Databases

	Chapter 5. Download and Installation
	5.1. Download OpenWMS.org
	5.2. Unpack and Install OpenWMS.org

	Chapter 6. The First Start
	6.1. Running OpenWMS.org
	6.2. Logout or Lock the Application

	Part III. The CORE module
	Chapter 7. Module Management
	7.1. Overview
	7.2. Defining new Application Modules
	7.3. Change existing Application Modules
	7.4. Manually Loading and Unloading Application Modules

	Chapter 8. User Management
	8.1. Overview
	8.2. User Details
	8.3. Change User's Image
	8.4. Change User's Password
	8.5. System User Account
	8.6. User Preferences

	Chapter 9. Role Management
	9.1. Overview
	9.2. Role Management Screen
	9.3. Creating a new Role
	9.4. Modifing an existing Roles
	9.5. Assigning Grants to a Role
	9.6. Assigning Users to a Role

	Chapter 10. Preference Management
	10.1. Overview
	10.2. Preference Management Screen
	10.3. Create a new Preference
	10.4. Modify an existing Preference
	10.5. Delete an existing Preference

	Appendix A.
	Glossary

